Nerve-evoked synchronous release and high K+ -induced quantal events are regulated separately by synaptotagmin I at Drosophila neuromuscular junctions.
نویسندگان
چکیده
The distal Ca(2+)-binding domain of synaptotagmin I (Syt I), C2B, has two Ca(2+)-binding sites. To study their function in Drosophila, pairs of aspartates were mutated to asparagines and the mutated syt I was expressed in the syt I-null background (P[syt I(B-D1,2N)] and P[syt I(B-D3,4N)]). We examined the effects of these mutations on nerve-evoked synchronous synaptic transmission and high K(+)-induced quantal events at embryonic neuromuscular junctions. The P[syt I(B-D1,2N)] mutation virtually abolished synaptic transmission, whereas the P[syt I(B-D3,4N)] mutation strongly reduced but did not abolish it. The quantal content in P[syt I(B-D3,4N)] increased with the external Ca(2+) concentration, [Ca(2+)](e), with a slope of 1.86 in double-logarithmic plot, whereas that of control was 2.88. In high K(+) solutions the quantal event frequency in P[syt I(B-D3,4N)] increased progressively with [Ca(2+)](e) between 0 and 0.15 mM as in control. In contrast, in P[syt I(B-D1,2N)] the event frequency did not increase progressively between 0 and 0.15 mM and was significantly lower at 0.15 than at 0.05 mM [Ca(2+)](e). The P[syt I(B-D1,2N)] mutation inhibits high K(+)-induced quantal release in a narrow range of [Ca(2+)](e) (negative regulatory function). When Sr(2+) substituted for Ca(2+), nerve-evoked synchronous synaptic transmission was severely depressed and delayed asynchronous release was appreciably increased in control embryos. In high K(+) solutions with Sr(2+), the quantal event frequency was higher than that in Ca(2+) and increased progressively with [Sr(2+)](e) in control and in both mutants. Sr(2+) partially substitutes for Ca(2+) in synchronous release but does not support the negative regulatory function of Syt I.
منابع مشابه
Quantal measurement and analysis methods compared for crayfish and Drosophila neuromuscular junctions, and rat hippocampus.
Quantal content of transmission was estimated for three synaptic systems (crayfish and Drosophila neuromuscular junctions, and rat dentate gyrus neurons) with three different methods of measurement: direct counts of released quanta, amplitude measurements of evoked and spontaneous events, and charge measurements of evoked and spontaneous events. At the crayfish neuromuscular junction, compariso...
متن کاملExternal Ca2+ dependency of synaptic transmission in drosophila synaptotagmin I mutants.
To resolve some of differences in reports on the function of Synaptotagmin I (Syt I), we re-examined synaptic transmission at the neuromuscular junction of Drosophila embryos that have mutations in the Syt I gene (syt I). Two major questions addressed were which Ca2+ binding domain, C2A or C2B, sense Ca2+ and is Syt I a negative regulator of spontaneous vesicle fusion. Synaptic currents were in...
متن کاملPostfusional Control of Quantal Current Shape
Whether glutamate is released rapidly, in an all-or-none manner, or more slowly, in a regulated manner, is a matter of debate. We analyzed the time course of excitatory postsynaptic currents (EPSCs) at glutamatergic neuromuscular junctions of Drosophila and found that the decay phase of EPSCs was protracted to a variable extent. The protraction was more pronounced in evoked and spontaneous quan...
متن کاملExternal Ca Dependency of Synaptic Transmission in Drosophila synaptotagmin I Mutants
Okamoto, Tomonori, Takuya Tamura, Kazuhiro Suzuki, and Yoshiaki Kidokoro. External Ca dependency of synaptic transmission in Drosophila synaptotagmin I mutants. J Neurophysiol 94: 1574–1586, 2005; doi:10.1152/jn.00205.2005. To resolve some of differences in reports on the function of Synaptotagmin I (Syt I), we re-examined synaptic transmission at the neuromuscular junction of Drosophila embryo...
متن کاملInteraction of glutamate- and adenosine-induced decrease of acetylcholine quantal release at frog neuromuscular junction.
In a frog neuromuscular preparation of m. sartorius, glutamate had a reversible dose-dependent inhibitory effect on both spontaneous miniature endplate potentials (MEPP) and nerve stimulation-evoked endplate potentials (EPP). The effect of glutamate on MEPP and EPP is caused by the activation of metabotropic glutamate receptors, as it was eliminated by MCPG, an inhibitor of group I metabotropic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 1 شماره
صفحات -
تاریخ انتشار 2007